Skip to main content
  • Berkeley Lab(link is external)
  • Energy Technologies Area(link is external)
Home
  • Join
  • About +
    • FAQs
    • Team Members
    • Partners
    • Participants
  • Resources +
    • Guidance Documents
    • Case Studies
    • Webinars
    • External Resources

Error message

There was a problem getting your available contact lists.

Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

Publication Type

Journal Article

Date Published

11/2010

Authors

Sleiman, Mohamad, Hugo Destaillats, Jared D. Smith, Chen-Lin Liu, Musahid Ahmed, Kevin R. Wilson, Lara A. Gundel

DOI

10.1016/j.atmosenv.2010.07.023(link is external)

Abstract

We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (<100 nm) that contained high molecular weight nitrogenated species (m/z 400–500), which can be due to accretion/acid–base reactions and formation of oligomers. In addition, nicotine was found to contribute significantly (with yields 4–9%) to the formation of secondary organic aerosol through reaction with ozone. The main constituents of the resulting SOA were tentatively identified and a reaction mechanism was proposed to elucidate their formation. These findings identify a new component of thirdhand smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

Journal

Atmospheric Environment

Volume

44

Year of Publication

2010

URL

http://www.sciencedirect.com/science/article/pii/S1352231010005923(link is external)

Issue

34

Organization

Indoor Environment Group, Sustainable Energy Department, Energy Analysis and Environmental Impacts Division

Research Areas

IEG Smoking and Vaping, EAEI Healthy & Efficient Buildings

        

©2025 Energy Technologies Area, Berkeley Lab
Lawrence Berkeley National Laboratory (link is external)
  • twitter(link is external)
  • instagram(link is external)
  • LinkedIn(link is external)
  • facebook(link is external)
  • youtube(link is external)
  • DOE logo
  • UC logo
A U.S. Department of Energy National Laboratory Managed by the University of California
Questions & Comments(link is external) Privacy & Security Notice(link is external)