Pb/U fractionation during Nd : YAG 213 nm and 266 nm laser ablation sampling with inductively coupled plasma mass spectrometry
Publication Type
Date Published
Authors
Abstract
Elemental fractionation during laser ablation sampling was investigated by measuring Pb/U ratios in NIST 610 synthetic glass. Two Nd:YAG lasers with wavelengths of 213 and 266 nm were used to ablate the sample into an inductively coupled plasma mass spectrometer. Pb/U fractionation was observed to be similar for both laser wavelengths, and dependent on the irradiance. For representative Pb/U measurements, the necessary laser irradiance should be >0.6 GW/cm2. However, if the laser beam is initially focused close to the sample surface, fractionation increases and is influenced by the formation of a crater during repetitive pulsing at a single sample location. As the ratio of crater depth to radius increases, plasma sampling and/or an effective irradiance decrease could cause additional fractionation. A good correlation was found between the fractionation of 14 elements in NIST 610 glass and the logarithms of their oxide melting temperatures.