Macroscopic Modeling of Porous Electrodes
Publication Type
Date Published
Authors
DOI
Abstract
It is well known that for optimal performance of electrochemical energy storage and conversion devices, it is necessary to have a nonplanar electrode to increase reaction area. One requires a porous electrode with multiple phases that can transport the reactant and products in the electrode while also undergoing reaction; an analogy in heterogeneous catalysis is reaction through a catalyst particle. For traditional devices, porous electrodes are often comprised of an electrolyte (which can be solid or liquid) that carries the ions or ionic current and a solid phase that carries the electrons or electronic current. In addition, there may be other phases such as a gas phase (e.g., fuel cells). Schematically one can consider the porous electrode as a transmission-line model as shown in Fig. 1.