Skip to main content
  • Berkeley Lab(link is external)
  • Energy Technologies Area(link is external)
Home
  • Join
  • About +
    • FAQs
    • Team Members
    • Partners
    • Participants
  • Resources +
    • Guidance Documents
    • Case Studies
    • Webinars
    • External Resources

Error message

There was a problem getting your available contact lists.

Electron Microscopy and Electrochemistry of Nickel Oxide Films for Electrochromic Devices Produced by Different Techniques

Publication Type

Conference Paper

Date Published

08/1989

Authors

Lampert, Carl M, R'Sue Caron-Popowich

Abstract

In this study we report on our investigation of the microstructure of nickel oxide films produced by e-beam evaporation, sol-gel deposition, and sputtering techniques. We give characteristic cyclic voltammetry, current-voltage relationships, and optical transmission data for films made by each technique. Data is shown for electrodes, both uncycled and cycled, for 17-20 hrs. We found all samples have at least one phase corresponding to cubic nickel oxide (NaC1 structure). Other phases, such as nickel hydroxide, may exist but are not immediately identifiable. The structure of the films ranges from fine polycrystalline to amorphous and varies over the surface of the sample. Films that were cycled for 17-20 hours all tended to have improved transmittance, as high as as20% change. The highest transmission range from bleached to colored was for the evaporated films, which showed delta T=60%. The sol-gel films showed a large residual coloration in the bleached state after cycling (about a 40% decline was noted). Overall, after cycling the films appeared to be slightly more crystalline. In all films, after cycling there were increases in the coloration and bleaching current. Also, peak shifts were noted after cycling; the coloration peak tended to shift to higher and the bleaching peak shifted to lower potentials. The overall coloration efficiency (550 nm) for these films ranged from 26-36 cm2/C.

Journal

SPIE Optical and Optoelectronic Applied Science and Engineering Conference

Volume

1149

Year of Publication

1989

Organization

Building Technologies Department, Building Technology and Urban Systems Division, Windows and Envelope Materials

Research Areas

Windows and Daylighting, BTUS Windows and Daylighting

Related Files

PDF (1.87 MB) (link is external)

        

©2025 Energy Technologies Area, Berkeley Lab
Lawrence Berkeley National Laboratory (link is external)
  • twitter(link is external)
  • instagram(link is external)
  • LinkedIn(link is external)
  • facebook(link is external)
  • youtube(link is external)
  • DOE logo
  • UC logo
A U.S. Department of Energy National Laboratory Managed by the University of California
Questions & Comments(link is external) Privacy & Security Notice(link is external)