Skip to main content
  • Berkeley Lab(link is external)
  • Energy Technologies Area(link is external)
Home
  • Join
  • About +
    • FAQs
    • Team Members
    • Partners
    • Participants
  • Resources +
    • Guidance Documents
    • Case Studies
    • Webinars
    • External Resources

Error message

There was a problem getting your available contact lists.

Characterization of Sol-Gel Deposited Niobium Pentoxide Films for Electrochromic Devices

Publication Type

Journal Article

Authors

Özer, Nilgün, Timothy Barreto, Temel Buyuklimanl, Carl M Lampert

Abstract

Niobium pentoxide films, fabricated by the sol-gel process, were spin coated onto conductive indium tin oxide (ITO)/glass, and microscope slides. These films were cycled in a 1M LiClO4 propylene carbonate (PC) solution, and exhibited electrochromic behavior upon the electrochemical insertion (reduction) and extraction (oxidation) of lithium. In-situ optical transmittance measurements were investigated in the ultraviolet/visible/near-infrared wavelength regions (250-2100 nm). Niobium pentoxide films showed reversible optical switching from 320 to 870 nm, but were found electrochromically inactive in the infrared region. Surface analysis using X-ray photoelectron spectroscopy (XPS) indicated little difference in the chemistry of Nb2O5 films as deposited and lithiated LixNb2O5 films, as XPS binding energies of Nb and O showed no appreciable shifts. These films were found to be amorphous by X-ray diffraction. Optical transmittance measurements combined with cyclic voltamograms and XPS spectra, revealed that the electrochromic behavior of these films occurs due to the insertion of Li+ cations into niobium pentoxide films. The bronze coloration of the niobium pentoxide films could make them useful as an electrochromic counter electrodesfor electrochromic devices.

Journal

Solar Energy Materials and Solar Cells

Volume

36

Year of Publication

1994

Organization

Building Technologies Department, Building Technology and Urban Systems Division, Windows and Envelope Materials

Research Areas

Advanced Coatings, Building Façade Solutions, Windows and Daylighting, W and D: Dynamic Glazings and Advanced Coatings, BTUS Windows and Daylighting

Related Files

PDF (509.71 KB) (link is external)

        

©2025 Energy Technologies Area, Berkeley Lab
Lawrence Berkeley National Laboratory (link is external)
  • twitter(link is external)
  • instagram(link is external)
  • LinkedIn(link is external)
  • facebook(link is external)
  • youtube(link is external)
  • DOE logo
  • UC logo
A U.S. Department of Energy National Laboratory Managed by the University of California
Questions & Comments(link is external) Privacy & Security Notice(link is external)